Hair bundle heights in the utricle: differences between macular locations and hair cell types.

نویسندگان

  • Jingbing Xue
  • E H Peterson
چکیده

Hair bundle structure is a major determinant of bundle mechanics and thus of a hair cell's ability to encode sound and head movement stimuli. Little quantitative information about bundle structure is available for vestibular organs. Here we characterize hair bundle heights in the utricle of a turtle, Trachemys scripta. We visualized bundles from the side using confocal images of utricular slices. We measured kinocilia and stereocilia heights and array length (distance from tall to short end of bundle), and we calculated a KS ratio (kinocilium height/height of the tallest stereocilia) and bundle slope (height fall-off from tall to short end of bundle). To ensure that our measurements reflect in vivo dimensions as closely as possible, we used fixed but undehydrated utricular slices, and we measured heights in three dimensions by tracing kinocilia and stereocilia through adjacent confocal sections. Bundle heights vary significantly with position on the utricular macula and with hair cell type. Type II hair cells are found throughout the macula. We identified four subgroups that differ in bundle structure: zone 1 (lateral extrastriola), striolar zone 2, striolar zone 3, and zone 4 (medial extrastriola). Type I hair cells are confined to striolar zone 3. They have taller stereocilia, longer arrays, lower KS ratios, and steeper slopes than do neighboring (zone 3) type II bundles. Models and experiments suggest that these location- and type-specific differences in bundle heights will yield parallel variations in bundle mechanics. Our data also raise the possibility that differences in bundle structure and mechanics will help explain location- and type-specific differences in the physiological profiles of utricular afferents, which have been reported in frogs and mammals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Architecture of the mouse utricle: macular organization and hair bundle heights.

Hair bundles are critical to mechanotransduction by vestibular hair cells, but quantitative data are lacking on vestibular bundles in mice or other mammals. Here we quantify bundle heights and their variation with macular locus and hair cell type in adult mouse utricular macula. We also determined that macular organization differs from previous reports. The utricle has approximately 3,600 hair ...

متن کامل

Autocorrelation analysis of hair bundle structure in the utricle.

The ability of hair bundles to signal head movements and sounds depends significantly on their structure, but a quantitative picture of bundle structure has proved elusive. The problem is acute for vestibular organs because their hair bundles exhibit complex morphologies that vary with endorgan, hair cell type, and epithelial locus. Here we use autocorrelation analysis to quantify stereociliary...

متن کامل

Differences between stereocilia numbers on type I and type II vestibular hair cells.

A major outstanding goal of vestibular neuroscience is to understand the distinctive functional roles of type I and type II hair cells. One important question is whether these two hair cell types differ in bundle structure. To address this, we have developed methods to characterize stereocilia numbers on identified type I and type II hair cells in the utricle of a turtle, Trachemys scripta. Our...

متن کامل

Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure.

Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bun...

متن کامل

Utricular afferents: morphology of peripheral terminals.

The utricle provides critical information about spatiotemporal properties of head movement. It comprises multiple subdivisions whose functional roles are poorly understood. We previously identified four subdivisions in turtle utricle, based on hair bundle structure and mechanics, otoconial membrane structure and hair bundle coupling, and immunoreactivity to calcium-binding proteins. Here we ask...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 2006